A Low-Temperature-Fired Multifunctional Varistor-Magnetic Ferrite Material - CuCr$_{0.2}$Fe$_{1.8}$O$_4$

Li-Then Mei,1 Hsing-I Hsiang,1 Chi-Shiung Hsi,2 and Hui-Wen Ye1

1Department of Resources Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
2Department of Materials Science and Engineering, National United University, Miaoli, 36063, Taiwan, Republic of China
(Received May 20, 2012)

A novel low temperature-fired (950°C) multifunctional varistor-magnetic ferrite material can be obtained by adding V$_2$O$_5$ into CuCr$_{0.2}$Fe$_{1.8}$O$_4$ ferrite. The relationship between the grain-boundary composition and varistor properties were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion spectroscopy (EDS), and X-ray photoelectric spectroscopy (XPS). The addition of V$_2$O$_5$ can effectively reduce the sintering temperature of CuCr$_{0.2}$Fe$_{1.8}$O$_4$ ferrites to temperatures of lower than 950°C. Moreover, the V$^{5+}$ ions dissolved into spinel structure and acted as donor dopant, which resulted in the semi-conductive grain. The copper-rich observation at the grain boundary based on the TEM and EDS results implied that copper oxide would possibly develop at the grain boundary as the acceptor state, forming double Schottky barriers with the n-type semiconductor grains.

DOI: 10.6122/CJP.50.896
PACS numbers: 84.32.Ff, 75.47.Lx

I. INTRODUCTION

The trends of the electronic devices are toward light and slim. The size of the final product can be reduced by integrating different kinds of passive components via cofiring technology [1–3]. Mismatched densification kinetics, chemical reaction and thermal expansion mismatch between the layers could generate undesirable defects such as delamination, cracks and camber in the final products [2–4]. To solve the densification and thermal expansion mismatch problems, a multi-functional material with simultaneously magnetic and varistor properties can be used to fabricate multi-functional passive devices.

ZnO varistors are widely used in electronic devices to protect devices from voltage surge. The varistor property originates from Schottky barrier [5] resulting from the n-type semiconductive grain and p-type or insulated grain-boundary [5–7]. In ZnO varistors, two kinds of additive oxides are used to improve varistor property [5, 6]. One kind of cation dissolves in ZnO grains to increase the donor concentration, such as Co$_3$O$_4$, Mn$_2$O$_3$ [5, 8]. The other one is an insoluble ion, which segregates at the grain-boundaries, so-called varistor former, such as BaO, Bi$_2$O$_3$, Pr$_6$O$_{11}$ [5, 9]. In ZnO varistors, the excess oxygen in the grain-boundary region would contribute to the buildup of Schottky-type potential barriers [10]. The previous experimental data indicated that the typical values for the trap density, donor concentration and barrier height for a varistor, are about 10^{13} cm$^{-2}$, 10^{17} cm$^{-3}$ and ~ 0.8 eV, respectively [5].
Spinel ferrites are commonly used as the raw materials of the magnetic components [11] to decrease the electromagnetic interference (EMI) of the electronic system [3]. Mayer [12] reported that the ferrites may exhibit varistor properties while Schottky barriers exist, which can be used to fabricate multifunctional varistor-magnetic devices. However, the multifunctional varistor-magnetic ferrites reported by Mayer were only speculative and no detailed formulation and process were described.

\[\text{CuCr}_{x}\text{Fe}_{2-x}\text{O}_4 \] is an n-type conductor as \(x \) is equal to 0.2, [13]. \(\text{CuCr}_2\text{O}_4 \) can store or release oxygen at different temperature or atmosphere [14, 15]. \(\text{V}_2\text{O}_5 \) can act as a varistor former and sintering aid in ZnO varistor [16]. In this study, a low temperature-fired (950°C) multifunctional varistor-magnetic ferrite material was prepared by adding \(\text{V}_2\text{O}_5 \) into \(\text{CuCr}_{0.2}\text{Fe}_{1.8}\text{O}_4 \) ferrites. The relationship between the grain-boundary composition and varistor properties of \(\text{V}_2\text{O}_5 \) doped \(\text{CuCr}_{0.2}\text{Fe}_{1.8}\text{O}_4 \) ferrites were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion spectroscopy (EDS), and X-ray photoelectric spectroscopy (XPS).

II. EXPERIMENTS

\(\text{CuCr}_{0.2}\text{Fe}_{1.8}\text{O}_4 \) specimens were prepared using a conventional solid-state reaction and sintering process. The \(\text{CuO} \) (99.7%), \(\text{Cr}_2\text{O}_3 \) (98%), and \(\text{Fe}_2\text{O}_3 \) (99.9%) powders were mixed by ball milling with \(\text{ZrO}_2 \) balls for 12 hours. The mixed powders were calcined for 2 hours at 1000°C in air after drying. X-ray diffraction identified a single spinel phase for the powders after calcinations. \(\text{V}_2\text{O}_5 \) (99.5%) powders were added into the calcined powders with a composition expression, such as (100-\(x \)) mol\% \(\text{CuCr}_{0.2}\text{Fe}_{1.8}\text{O}_4 \) +\(x \) mol\% \(\text{V}_2\text{O}_5 \) (\(x = 0.5, 1, 2 \)), abbreviate as CCFO05, CCFO1, CCFO2. These mixed powders were milled again for 24 hours. After milling, 1wt% polyvinyl alcohol (PVA) was added into the powders to help the formation of compacts. The powders were then uniaxially pressed at 100MPa into disks of 8mm in diameter and 2 mm in thickness. The greens were sintered at 900°C ~ 1000°C at an interval of 50°C in air for 2 hours, cooled to 500°C at 2°C/min then furnace cooled to room temperature.

The bulk density was calculated through the dry weight, diameter and thickness of the sample. The crystalline phase identification was determined using X-ray diffractometry (Siemens, D5000) with Cu-Kα radiation. In-Ga electrodes were rubbed on the sample surface for electrical conduction analyses. The specimen I-V curves were measured using a Keithley 2410 source meter. Then the electrical field versus current density diagram was obtained through the geometry factor of the sample. Complex impedance were measured at 1V over the frequency range from 20 Hz to 1MHz using a precision LCR meter (HP 4284A). The impedance contribution from grain can be separated from impedance spectrum [17, 18]. After measuring the impedance spectra at different temperature, we can obtain the activation energy of the grain through the Arrhenius equation. The Arrhenius equation is described as \(\sigma = \sigma_0 \exp \left(\frac{E_a}{RT} \right) \), where \(\sigma \), \(\sigma_0 \), \(E_a \), \(k \) are the conductivity, pre-exponential factor, activation energy, Boltzmann constant, respectively.

Field emission scanning electron microscopy (FE-SEM, JEOL JSM-6700F) was em-
ployed to observe the specimen microstructure and grain size. Before SEM observation, the specimens were polished and thermal etched at 850° for 30 minutes. A field emission transmission electron microscope (FEI, Tecnai G2 F20) equipped with a high-angle annular dark field (HAADF) detector was used for Z-contrast (Z: atomic number) images. Energy dispersive spectroscopy (EDS) was used to compare the grain and grain-boundary compositions. CCFO1 sintered at 900° was chose for FE-TEM observation.

A CCFO2 specimen sintered at 900° was polished using SiC abrasive paper to obtain a polished surface. Another CCFO2 specimen sintered at 900° was rapped using a hammer to obtain a fracture surface. The polished (PS) and fracture specimens (FS) were cleaned in acetone. The FS grain boundaries remained on the surface because of the relatively weak linkage between grains. X-ray photoelectron spectroscopy (XPS) (ESCA PHI 1600, Physical Electronics) measurement was performed on both PS and FS with Mg Kα (1253.5 eV) radiation. The sample charge produced by irradiation was determined by measuring the shift in the C 1s signal given by a binding energy of 284.5 eV. The X-ray photoelectron spectra were simulated using XPSPEAK41.

The M-H curve was measured using a superconducting quantum interference device magnetometer (MPMS SQUID VSM, Quantum Design) to obtain the coercive force and remanent flux density.

III. RESULT AND DISCUSSION

Fig. 1 shows the X-ray diffraction patterns of the powders after calcination and the sample after sintering. There was no distinct difference between the powders after calcination and the sample after sintering. The theoretical density calculated from the XRD result of the powders after calcination is 5.389 g/cm³. The bulk density for the specimens added with various amount of V₂O₅ sintering at different temperatures is shown in Fig. 2. The sample added with 0.5mol% V₂O₅, CCFO05, cannot be densified at 900°. The bulk density increased with increasing sintering temperature for CCFO1 specimens. The bulk density decreased with increasing sintering temperature for CCFO2 specimens, which may be due to the over-sintering.

Fig. 3 shows the SEM images of the CCFO05, CCFO1 and CCFO2 specimens sintered at various temperatures. Discontinuous grain growth was found in Figs. 3 (b) and 3 (d). Fig. 4 shows the average grain size of the specimens, indicating that the average grain size increased with increasing sintering temperature.

Fig. 5 shows the high-angle annular dark field (HAADF) image for CCFO1 sintered at 900°. The compositions at different positions shown in Fig. 5 are listed in table I. In the HAADF-STEM imaging, the image intensity is approximately proportional to the square of the atomic number termed as Z-contrast imaging and atomic column occupancy, allowing heavy atoms to be visualized directly from the image contrast features.

Thus the bright region in Fig. 5 can be attributed to Cu-rich phase due to copper has the largest atomic number in CCFO1 specimens. Table I and Fig. 5 show that copper-rich phase may segregate at grain-boundaries and triple junctions, and precipitate in the
FIG. 1: X-ray diffraction patterns of the powders after calcination and the sample after sintering.

FIG. 2: Bulk density for the specimens added with various amount of V$_2$O$_5$ sintering at different temperatures.
FIG. 3: SEM images for CCFO065 specimens sintered at (a) 900°C, (b) 950°C, (c) 1000°C; CCFO1 specimens sintered at (d) 900°C, (e) 950°C, (f) 1000°C; CCFO2 specimens sintered at (g) 900°C, (h) 950°C, (i) 1000°C

TABLE I: Energy dispersive spectroscopy (EDS) analyses results at different positions in Fig. 5.

<table>
<thead>
<tr>
<th>Position</th>
<th>Atom%</th>
<th>Cu</th>
<th>Fe</th>
<th>Cr</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (triple junction)</td>
<td>96.93</td>
<td>2.26</td>
<td>0.47</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>2 (grain-boundary)</td>
<td>92.70</td>
<td>6.10</td>
<td>0.92</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>3 (grain)</td>
<td>58.73</td>
<td>37.55</td>
<td>3.59</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>4 (grain)</td>
<td>2.03</td>
<td>90.00</td>
<td>7.89</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

interiors of the grains. This copper-rich phase(s) may increase the acceptor concentration at the grain-boundaries and enhance the varistor property [19]. The diffraction pattern at position 3 in Fig. 5 is shown in Fig. 6. Fig. 7 shows the diffraction pattern after treating with logarithmic calculation of Fig. 6. The precipitation of copper would form vacancies
FIG. 4: Average grain size of the specimens sintered at various temperatures.

FIG. 5: High-angle annular dark field (HAADF) image for CCFO1 specimen sintered at 900°C.
FIG. 6: Diffraction pattern at position 3 in Fig. 5. The diffraction pattern is spinel phase and the d values are consistent with the results in Fig. 1.

FIG. 7: Diffraction pattern after treating with logarithmic calculation of Fig. 6.
FIG. 8: X-ray photoelectric spectroscopy (XPS) spectrum of Cu 2p for the fracture surface of CCFO2 sintered at 900°C. The solid line and dash line represent Cu$^{2+}$ 2p$_{3/2}$ peak and Cu$^+$ 2p$_{3/2}$ peak, respectively.

in spinel ferrite, causing the formation of extra diffraction points in Fig. 7. Cu-Cr spinel phase will decompose to CuCrO$_2$, Cr$_2$O$_3$, or CuO at high temperature [15]. The copper-poor region occurred at position 4 in Fig. 5 may due to the decomposition for Cu-Cr ferrite. Table I also reveal that the grains contain a small amount of vanadium.

The copper XPS results for FS and PS samples are shown in Figs. 8 and 9, respectively. The simulation results indicate that the peak through 928 eV to 938 eV can be deconvoluted into two peaks for the FS and PS samples. These two peaks can be assigned to Cu$^+$ and Cu$^{2+}$ [20]. The total Cu$^{2+}$ 2p$_{3/2}$ peak area is larger than the Cu$^+$ 2p$_{3/2}$ peak in FS. Conversely, the Cu$^+$ 2p$_{3/2}$ peak area is larger than the Cu$^{2+}$ 2p$_{3/2}$ peaks in PS. These results suggest that FS sample contained more Cu$^{2+}$ than PS, this result may due to the grain-boundaries exhibit higher oxygen partial pressure than grains. Copper oxide with cation vacancies are p-type semi-conductor [21]. The oxidization for copper oxide located at grain-boundaries can increase the acceptor concentration, and enhance the varistor property. The XPS results show that the valence of chromium and vanadium are 3 and 5, respectively.

The non-linear coefficient (α, $10^{-2} \sim 10^{-1.5}$ A/cm2) of the specimens is shown in Fig. 10. The non-linear coefficient of CCFO05 specimens are not shown in Fig. 10, because the specimens were breakdown during the I-V curve measurement. CCFO05 specimen after sintering at 1000° exhibited non-ohmic property and the non-linear coefficient was about 35 at the first I-V curve measurement. However, it was breakdown after the second measurement. The non-linear coefficient for CCFO1 specimen sintered at 950° is larger than the
FIG. 9: X-ray photoelectric spectroscopy (XPS) spectrum of Cu 2p for the polished surface of CCFO2 sintered at 900°C. The solid line and dash line represent Cu$^{2+}$ 2p$_{3/2}$ peak and Cu$^{+}$ 2p$_{3/2}$ peak, respectively.

FIG. 10: Non-linear coefficient for the specimens under different processing conditions.
FIG. 11: J-E curve of (a) CCFO05, (b) CCFO1, (c) CCFO2 specimens under different sintering temperature.
specimen sintered at 900° may due to the discontinuous grain growth. After discontinuous grain growth, the microstructure and grain size distribution were more uniform. While an electric field was applied on a specimen with non-uniform microstructure and broad grain size distribution, such as CCFO1 specimen sintered at 900°, the path of the current would not go through the high resistance Schottky barriers, but concentrate at the region with low resistance, which led to the non-linear coefficient decreased. The non-linear coefficient of CCFO1 specimen sintered at 950° may due to the grain size effect. For CCFO2 specimens, the non-linear coefficient decreased with increasing sintering temperature is due to the same reason. The number of grain-boundary per unit volume is inverse proportion to grain size. When the grain size increased, the I-V

FIG. 12: Complex impedance plane plots of the specimens at room temperature.
FIG. 13: Activation energies of the specimens added with 0.5-2 mol% V_2O_5 sintered at different temperatures.

FIG. 14: M-H curve for CCFO1 specimen sintered at 900°C.
curve would shift downward and rightward due to the higher electric field applied on the grain-boundaries. The current density (J) versus electric field (E) curves of the specimens sintered at different temperatures are shown in Fig. 11. The J-E curve in Fig. 11 (c) was shifted downward and rightward as the sintering temperature was raised due to the increase of the grain size of CCFO2 with increasing sintering temperature. According to the definition of the non-linear coefficient, the displacement of the J-E curve, caused part of the ohmic region was included in the region for non-linear coefficient calculation. Therefore the non-linear coefficient decreased with increasing temperature for CCFO2 specimens.

Fig. 12 shows the complex impedance plane plots of the specimens. There are two semi-circles in the complex impedance plane plots for CCFO05 specimen sintered at 900°C, as shown in Fig. 12 (a). The left and right parts of the semi-circles in Fig. 12 (b) to Fig. 12 (i) are not symmetry, suggesting that there are also two semi-circles [18, 22] in Fig. 12 (b) to Fig. 12 (i). The left part of the semi-circle represents the grain impedance, and the right part of the semi-circle represents the grain boundary impedance [18, 22]. The grain activation energies of the specimens are shown in Fig. 13. The grain activation energy of CCFO05 specimen was about 0.45 eV, CCFO1 and CCFO2 were both about 0.37 eV. According to the TEM and activation energy results, vanadium would dissolve into the grain and act as donor dopant to increase the conductivity of the grain. The activation energies of CCFO05 specimens are too high that these specimens do not exhibit varistor property.

The M-H curve for CCFO1 specimen sintered at 900°C is shown in Fig. 14. The coercive force and remanent flux density are 2000e and 9.848emu/g, respectively. These results suggest that CCFO specimens are soft magnetic materials.

IV. CONCLUSIONS

The addition of V₂O₅ can effectively reduce the sintering temperature of CuCr₀.₂Fe₁.₈O₄ ferrites to temperatures of lower than 950°C. Moreover, the V⁵⁺ ions dissolved into the spinel structure and acted as donor dopant, which resulted in the semiconductive grain. The segregation of copper rich phase(s) at the grain-boundary may increase the acceptor concentration, and hence improve the varistor property. The CuCr₀.₂Fe₁.₈O₄ ferrite added with 1-2 mol%V₂O₅ sintered at 900°C exhibited both magnetic and varistor properties, which can be a good candidate material for the application in ESD and EMI.

References