Black-Body Radiation for Twist-Deformed Space-Time

Marcin Daszkiewicz

Institute of Theoretical Physics, University of Wroclaw pl. Maxa Borna 9, 50-206 Wroclaw, Poland
(Received July 30, 2015; Revised September 28, 2015)

In this article we formally investigate the impact of twisted space-time on the black-body radiation phenomena, i.e., we derive the θ-deformed Planck distribution function as well as performing its numerical integration to the θ-deformed total radiation energy. In such a way we indicate that the space-time noncommutativity very strongly damps the black-body radiation process. Besides we provide for small parameter θ the twisted counterparts of the Rayleigh-Jeans and Wien distributions, respectively.

DOI: 10.6122/CJP.20150930 PACS numbers: 02.40.Gh, 02.20.Uw, 44.40.+a

I. INTRODUCTION

The suggestion to use noncommutative coordinates goes back to Heisenberg and was firstly formalized by Snyder in [1]. Recently, there were also found using formal arguments based mainly on quantum gravity [2, 3] and string theory models [4, 5], indicating that space-time at the Planck scale should be noncommutative, i.e., it should have a quantum nature. Consequently, there are a number of papers dealing with noncommutative classical and quantum mechanics (see, e.g., [6–9]), as well as with field theoretical models (see, e.g., [10–12]) in which quantum space-time is employed.

It is well-known that a proper modification of the Poincaré and Galilei-Hopf algebras can be realized in the framework of quantum groups [13, 14]. Hence, in accordance with the Hopf-algebraic classification of all deformations of relativistic and nonrelativistic symmetries (see [15, 16]), one can distinguish three types of quantum spaces [15, 16] (for details see also [17]):

1) Canonical ($\theta^{\mu\nu}$-deformed) type of quantum space [18–20]

$$[x_{\mu}, x_{\nu}] = i\theta_{\mu\nu},$$

2) Lie-algebraic modification of classical space-time [20–23]

$$[x_{\mu}, x_{\nu}] = i\theta^{\rho}_{\mu\nu}x_{\rho},$$

and
3) Quadratic deformation of Minkowski and Galilei space [20–23, 25]

\[
[x_\mu, x_\nu] = i\theta^{\rho\tau}_{\mu\nu} x_\rho x_\tau, \quad (3)
\]

with the coefficients \(\theta^{\rho\tau}_{\mu\nu}\), \(\theta^\rho_{\mu\nu}\), and \(\theta^{\rho\tau}_{\mu\nu}\) being constants.

Moreover, it has been demonstrated in [17], that in the case of the so-called N-enlarged Newton-Hooke Hopf algebras \(U_0^{(N)}(NH_\pm)\) the twist deformation provides a new space-time noncommutativity of the form [44] [45],

\[
4) \quad [t, x_i] = 0, \quad [x_i, x_j] = i f_\pm \left(\frac{t}{\tau} \right) \theta_{ij}(x), \quad (4)
\]

with time-dependent functions

\[
f_+ \left(\frac{t}{\tau} \right) = f \left(\sinh \left(\frac{t}{\tau} \right), \cosh \left(\frac{t}{\tau} \right) \right), \quad f_- \left(\frac{t}{\tau} \right) = f \left(\sin \left(\frac{t}{\tau} \right), \cos \left(\frac{t}{\tau} \right) \right),
\]

\(\theta_{ij}(x) \sim \theta_{ij} = \text{const or } \theta_{ij}(x) \sim \theta_{ij} x_k \) and \(\tau\) denoting the time scale parameter — the cosmological constant. Besides, it should be noted that the above mentioned quantum spaces 1), 2), and 3) can be obtained by the proper contraction limit of the commutation relations 4).

Recently, there has been discussed the impact of different kinds of quantum spaces on the dynamical structure of physical systems (see, e.g., [6–11] and [26–37]). Particularly, it has been demonstrated that, in the case of a classical oscillator model [29] as well as in the case of a nonrelativistic particle moving in constant external field force \(\vec{F} \) [30], there are generated by space-time noncommutativity additional force terms. Such a type of investigation has been performed for a quantum oscillator model as well [29], i.e., it was demonstrated that the quantum space in a nontrivial way affects the spectrum of the energy operator. Besides, in the paper [31] there has been considered a model of a particle moving on the \(\kappa\)-Galilei space-time in the presence of a gravitational field force. It has been demonstrated that in such a case there is produced a force term, which can be identified with the so-called Pioneer anomaly [33], and the value of the deformation parameter \(\kappa\) can be fixed by a comparison of the obtained result with observational data. Moreover, quite interesting results have been obtained in the series of papers [34–37] concerning the Hall effect for canonically deformed space-time (1). Particularly, there has been found the \(\theta\)-dependent (Landau) energy spectrum of an electron moving in a uniform magnetic as well as in a uniform electric field. Such results have been generalized to the case of the twisted N-enlarged Newton-Hooke Hopf algebra in the papers [38] and [39]. Finally, it should be mentioned that a similar investigation has been performed in the context of the black-body radiation process as well. For example, it has been demonstrated with the use of noncommutative electromagnetic field theory that black-body radiation for quantum space becomes anisotropic. A direct implication of such a result on the cosmic microwave background map has been argued in papers [40] and [41].

In this article we also investigate the impact of twisted space-time on the black-body radiation phenomena. However we assume that a single mode of the photon field oscillates
with a frequency predicted by the new, first-quantized and canonically noncommutative oscillator model. Precisely we derive the θ-deformed Planck distribution function as well as perform its numerical integration to the θ-deformed total radiation energy. In such a way we indicate that the space-time noncommutativity very strongly damps the black-body radiation process. Besides we provide for small parameter θ the twisted counterparts of the Rayleigh-Jeans and Wien distributions, respectively.

The paper is organized as follows. In Sect. II we recall basic facts concerning the most wide class of twisted (N-enlarged Newton-Hooke) space-times [17], which includes the canonically deformed one as well. The third section is devoted to the calculation of the isotropic energy spectrum for the oscillator model defined on such a quantum spaces. In Section IV the Planck distribution function is provided and its numerical integration to the θ-deformed total radiation energy is performed. The final remarks are presented in the last section.

II. TWISTED N-ENLARGED NEWTON-HOOKE SPACE-TIMES

In this section we recall the basic facts associated with the twisted N-enlarged Newton-Hooke Hopf algebra $U_\alpha^{(N)}(NH_\pm)$ and with the corresponding quantum space-times [17]. Firstly, it should be noted that in accordance with the Drinfeld twist procedure, the algebraic sector of the twisted Hopf structure $U_\alpha^{(N)}(NH_\pm)$ remains undeformed, i.e., it takes the form

$$[M_{ij}, M_{kl}] = i (\delta_{il} M_{jk} - \delta_{jl} M_{ik} + \delta_{jk} M_{il} - \delta_{ik} M_{jl}), \quad [H, M_{ij}] = 0,$$

$$[M_{ij}, G_i^{(n)}] = i \left(\delta_{jk} G_i^{(n)} - \delta_{ik} G_j^{(n)} \right), \quad [G_i^{(n)}, G_j^{(m)}] = 0,$$

$$[G_i^{(k)}, H] = -i \tau G_i^{(k-1)}, \quad [H, G_i^{(0)}] = \pm \frac{i}{\tau} G_i^{(1)}; \quad k > 1,$$

where τ, M_{ij}, H, $G_i^{(0)}$ ($= P_i$), $G_i^{(1)}$ ($= K_i$), and $G_i^{(n)}$ ($n > 1$) can be identified with the cosmological time parameter, rotation, time translation, momentum, boost, and acceleration operators, respectively. Besides, the coproducts and antipodes of the considered algebra are given by [47]

$$\Delta_\alpha(a) = F_\alpha \circ \Delta_0(a) \circ F_\alpha^{-1}, \quad S_\alpha(a) = u_\alpha S_0(a) u_\alpha^{-1},$$

with $u_\alpha = \sum f_1 f_0 (f_2)$ (we use the Sweedler’s notation $F_\alpha = \sum f_1 \otimes f_2$) and with the twist factor $F_\alpha \in U_\alpha^{(N)}(NH\pm) \otimes U_\alpha^{(N)}(NH\pm)$ satisfying the classical cocycle condition

$$F_{\alpha 12} \cdot (\Delta_0 \otimes 1) F_\alpha = F_{\alpha 23} \cdot (1 \otimes \Delta_0) F_\alpha,$$

and the normalization condition

$$(\epsilon \otimes 1) F_\alpha = (1 \otimes \epsilon) F_\alpha = 1,$$
such that $\mathcal{F}_{a12} = \mathcal{F}_a \otimes 1$ and $\mathcal{F}_{a23} = 1 \otimes \mathcal{F}_a$.

The corresponding quantum space-times are defined as the representation spaces (Hopf modules) for the N-enlarged Newton-Hooke Hopf algebra $\mathcal{U}_a^{(N)}(NH_{\pm})$. Generally, they are equipped with two the spatial directions commuting to classical time, i.e., they take the form

$$[t, \hat{x}_i] = [\hat{x}_1, \hat{x}_3] = [\hat{x}_2, \hat{x}_3] = 0, \quad [\hat{x}_1, \hat{x}_2] = i f(t); \quad i = 1, 2, 3.$$ \hspace{1cm} (11)

However, it should be noted that this type of noncommutativity has been constructed explicitly only in the case of the 6-enlarged Newton-Hooke Hopf algebra, with $[17] [48]$

$$f(t) = f_{\kappa_1}(t) = f_{\pm,\kappa_1}\left(\frac{t}{\tau}\right) = \kappa_1 C_{\pm}^{2}\left(\frac{t}{\tau}\right),$$

$$f(t) = f_{\kappa_2}(t) = f_{\pm,\kappa_2}\left(\frac{t}{\tau}\right) = \kappa_2 \tau C_{\pm}\left(\frac{t}{\tau}\right) S_{\pm}\left(\frac{t}{\tau}\right),$$

$$\ldots$$ \hspace{1cm} (12)

$$f(t) = f_{\kappa_35}\left(\frac{t}{\tau}\right) = 86400 \kappa_{35} \tau^{11}\left(\pm C_{\pm}\left(\frac{t}{\tau}\right) + \frac{1}{24}\left(\frac{t}{\tau}\right)^4 - \frac{1}{2}\left(\frac{t}{\tau}\right)^2 \mp 1\right) \times$$

$$\times \left(S_{\pm}\left(\frac{t}{\tau}\right) + \frac{1}{6}\left(\frac{t}{\tau}\right)^3 - \frac{t}{\tau}\right),$$

$$f(t) = f_{\kappa_36}\left(\frac{t}{\tau}\right) = 518400 \kappa_{36} \tau^{12}\left(\pm C_{\pm}\left(\frac{t}{\tau}\right) + \frac{1}{24}\left(\frac{t}{\tau}\right)^4 - \frac{1}{2}\left(\frac{t}{\tau}\right)^2 \mp 1\right)^2,$$

and

$$C_{+/-}\left(\frac{t}{\tau}\right) = \cosh / \cos\left(\frac{t}{\tau}\right) \quad \text{and} \quad S_{+/-}\left(\frac{t}{\tau}\right) = \sinh / \sin\left(\frac{t}{\tau}\right).$$

Moreover, one can easily check that when τ is approaching the infinity limit the above quantum spaces reproduce the canonical (1), Lie-algebraic (2), and quadratic (3) type of space-time noncommutativity, i.e., for $\tau \to \infty$ we get

$$f_{\kappa_1}(t) = \kappa_1,$$

$$f_{\kappa_2}(t) = \kappa_2 t,$$

$$\ldots$$ \hspace{1cm} (13)

$$f_{\kappa_35}(t) = \kappa_{35} t^{11},$$

$$f_{\kappa_36}(t) = \kappa_{36} t^{12}.$$
Of course, for all deformation parameters κ_a going to zero the above deformations disappear.

III. QUANTUM OSCILLATOR MODEL FOR TWISTED N-ENLARGED NEWTON-HOOKE SPACE-TIME

Let us now turn to the oscillator model defined on quantum space-times (11)–(13). In first step of our construction, we extend the described in pervious section spaces to the whole algebra of momentum and position operators as follows:

$$[\hat{x}_1, \hat{x}_2] = 2i f_{\kappa_a}(t), \quad [\hat{p}_1, \hat{p}_2] = 2i g_{\kappa_a}(t),$$

$$[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij} \left[1 + f_{\kappa_a}(t)g_{\kappa_a}(t)/\hbar^2 \right],$$

with the arbitrary function $g_{\kappa_a}(t)$. One can check that relations (14), (15) satisfy the Jacobi identity and for deformation parameters κ_a approaching zero become classical.

Next, by analogy to the commutative case, we define the Hamiltonian operator

$$\hat{H} = \frac{1}{2m} (\hat{p}_1^2 + \hat{p}_2^2) + \frac{1}{2} m\omega^2 (\hat{x}_1^2 + \hat{x}_2^2).$$

with m and ω denoting the mass and frequency of a particle, respectively. In order to analyze the above system, we represent the noncommutative operators (\hat{x}_i, \hat{p}_i) by the classical ones (x_i, p_i) as (see, e.g., [27–29])

$$\hat{x}_1 = x_1 - f_{\kappa_a}(t)p_2/\hbar,$$

$$\hat{x}_2 = x_2 + f_{\kappa_a}(t)p_1/\hbar,$$

$$\hat{p}_1 = p_1 + g_{\kappa_a}(t)x_2/\hbar,$$

$$\hat{p}_2 = p_2 - g_{\kappa_a}(t)x_1/\hbar,$$

where

$$[x_i, x_j] = 0 = [p_i, p_j], \quad [x_i, p_j] = i\hbar \delta_{ij}.$$

Then, the Hamiltonian (16) takes the form

$$\hat{H} = H(t) = \frac{1}{2M(t)} (p_1^2 + p_2^2) + \frac{1}{2} M(t)\Omega^2(t) (x_1^2 + x_2^2) - S(t)L,$$

with

$$L = x_1p_2 - x_2p_1,$$

$$1/M(t) = 1/m + m\omega^2 f_{\kappa_a}(t)/\hbar^2,$$

$$\Omega(t) = \sqrt{(1/m + m\omega^2 f_{\kappa_a}(t)/\hbar^2) \left(m\omega^2 + g_{\kappa_a}^2(t)/(\hbar^2m) \right)},$$

and

$$S(t) = m\omega^2 f_{\kappa_a}(t)/\hbar + g_{\kappa_a}(t)/(\hbar m).$$
In accordance with the scheme proposed in [29], we introduce a set of time-dependent creation \((a_A^\dagger(t))\) and annihilation \((a_A(t))\) operators
\[
\hat{a}_{\pm}^{}(t) = \frac{1}{2} \left[\frac{(p_2 \pm ip_1)}{\sqrt{M(t)\Omega(t)/\hbar}} - i\sqrt{M(t)\Omega(t)}/\hbar(x_2 \pm ix_1) \right],
\] (27)
satisfying the standard commutation relations
\[
[\hat{a}_A^{}, \hat{a}_B^{}], \quad [\hat{a}_A^\dagger, \hat{a}_B^\dagger] = 0, \quad [\hat{a}_A^{}, \hat{a}_B^\dagger] = \delta_{AB}, \quad A, B = \pm.
\] (28)
Then, it is easy to see that in terms of the objects (27) the Hamiltonian function (22) can be written as follows
\[
\hat{H}(t) = \hbar\Omega_+(t) \left[\hat{N}_+(t) + \frac{1}{2} \right] + \hbar\Omega_-(t) \left[\hat{N}_-(t) + \frac{1}{2} \right],
\] (29)
with the coefficient \(\Omega_\pm(t)\) and the particle number operators \(\hat{N}_\pm(t)\) given by
\[
\Omega_\pm(t) = \Omega(t) \mp S(t),
\] (30)
\[
\hat{N}_\pm(t) = \hat{a}^\dagger_\pm(t)\hat{a}_\pm(t).
\] (31)
Besides, one can observe that the eigenvectors of Hamiltonian (29) can be written as
\[
|n_+, n_-, t\rangle = \frac{1}{\sqrt{n_+!}} \frac{1}{\sqrt{n_-!}} \left(\hat{a}^\dagger_+(t) \right)^{n_+} \left(\hat{a}^\dagger_-(t) \right)^{n_-} |0\rangle,
\] (32)
while the corresponding eigenvalues take the form
\[
E_{n_+, n_-}(t) = \hbar\Omega_+(t) \left[n_+ + \frac{1}{2} \right] + \hbar\Omega_-(t) \left[n_- + \frac{1}{2} \right].
\] (33)
Let us now consider an interesting situation such that
\[
S(t) = 0.
\] (34)
One can check that it appears when the functions \(f_{\kappa_a}(t)\) and \(g_{\kappa_a}(t)\) satisfy the following condition
\[
f_{\kappa_a}(t) = -g_{\kappa_a}(t)/(\omega^2 m^2).
\] (35)
Then we have
\[
\Omega_-(t) = \Omega_+(t) = \Omega(t) = m\omega \left(1/m + m\omega^2 f_{\kappa_a}^2(t)/\hbar^2 \right),
\] (36)
and, consequently, the spectrum (33) provides the energy levels for a two-dimensional isotropic oscillator model with the time-dependent frequency: \(\Omega(t)\)
\[
E_{n_+, n_-}(t) = \hbar\Omega(t) \left[n_+ + \frac{1}{2} \right] + \hbar\Omega(t) \left[n_- + \frac{1}{2} \right].
\] (37)
Particularly, for the canonical deformation \(f_{\kappa_1}(t) = \kappa_1 = \theta \) we get
\[
E_{n_+,n_-,\theta} = \hbar \Omega_\theta \left[n_+ + \frac{1}{2}\right] + \hbar \Omega_\theta \left[n_- + \frac{1}{2}\right],
\]
with constant frequency
\[
\Omega_\theta = \Omega_\theta(\omega) = \frac{m}{c} \left(1/m + m\omega^2 \theta^2 / \hbar^2 \right),
\]
such that \(\lim_{\theta \to 0} \Omega_\theta = \omega \).

IV. BLACK-BODY RADIATION FOR TWISTED SPACE-TIME

In this section we derive the black-body radiation for \(\theta \)-deformed nonrelativistic space, i.e., due to the results of the previous section we take under consideration the following energies of a single mode of the photon field [49]
\[
E_{n,\theta} = \hbar \Omega_\theta(\omega) n; \quad n = 1, 2, 3, \ldots,
\]
where factor \(\Omega_\theta(\omega) \) is given just by (39). Consequently, in accordance with quantum theory [42] its average energy takes the form
\[
\overline{E}_\theta(\omega) = \frac{\hbar \Omega_\theta(\omega)}{\exp \left(\frac{\hbar \Omega_\theta(\omega)}{kT} \right) - 1},
\]
with the Boltzman constant \(k \) and temperature \(T \). Besides, due to the fact that the number of states with frequency from \(\omega \) to \(\omega + d\omega \) per volume unit is [42], [43]
\[
\rho(\omega)d\omega = \frac{8\pi\omega^2}{c^3}d\omega,
\]
we get the following \(\theta \)-deformed Planck distribution function [50]:
\[
f_\theta(\omega) = \frac{8\pi\hbar\omega^2}{c^3} \cdot \frac{\Omega_\theta(\omega)}{\exp \left(\frac{\hbar \Omega_\theta(\omega)}{kT} \right) - 1}.
\]
Of course, in the \(\theta \) approaching zero limit we reproduce from (43) the well-known Planck formula
\[
f(\omega) = \frac{8\pi\hbar}{c^3} \cdot \frac{\omega^3}{\exp \left(\frac{\hbar \omega}{kT} \right) - 1},
\]
while for small values of the deformation parameter, we have
\[
f_\theta(\omega) = \frac{8\pi\hbar}{c^3} \cdot \frac{\omega^3}{\exp \left(\frac{\hbar \omega}{kT} \right) - 1} + \frac{8\pi\hbar}{c^3} m^2 \omega^5 \left(\hbar \omega \exp \left(\frac{\hbar \omega}{kT} \right) - kT \left(\exp \left(\frac{\hbar \omega}{kT} \right) - 1 \right) \right) \theta^2 + O(\theta^3).
\]
Besides, in accordance with (45) in the high-temperature \((kT \gg \hbar \omega)\) as well as in the high-frequency \((\hbar \omega \gg kT)\) limit, we obtain the \(\theta\)-deformed counterparts of the Rayleigh-Jeans

\[
f_\theta(\omega) = \frac{8\pi \omega^2 \hbar^2 kT}{c^3} - \frac{8\pi m^2 \omega^5 kT \theta^2}{c^3 \hbar} + \mathcal{O}(\theta^3),
\]

and Wien

\[
f_\theta(\omega) = \frac{8\pi \hbar}{c^3} \cdot \omega^3 \exp \left(-\frac{\hbar \omega}{kT} \right) + \frac{8\pi \hbar}{c^3} \cdot \frac{m^2 \omega^5 (\hbar \omega - kT)}{kT \hbar^2} \exp \left(-\frac{\hbar \omega}{kT} \right) \theta^2 + \mathcal{O}(\theta^3),
\]
distributions, respectively.

Let us now find the total energy density of the radiation by integration of the formula (43) over all frequencies:

\[
u_\theta = \int_0^\infty f_\theta(\omega) d\omega;
\]

the results of the numerical calculations are summarized in Figures 3 and 4, respectively [51]. Consequently one can notice that the value of the deformed total radiation energy for fixed temperature \(T = 1\) and 2 strongly decreases with increasing deformation parameter \(\theta\). This means that the biggest value of the energy appears for the undeformed case (with \(\theta\) equal zero). Such a result (Figures 1–4 and formula (43)) formally indicates that the canonical space-time noncommutativity effectively damps the black-body radiation process.

FIG. 1: The shape of the distribution \(f_\theta(\omega)\) for three different values of the deformation parameter theta: \(\theta = 0\) (continuous line), \(\theta = 0.1\) (dashed line), and \(\theta = 0.2\) (dotted line). In all three cases we fix the temperature \(T = 1\) and the parameter \(m = 1\).
FIG. 2: The shape of the distribution \(f_\theta(\omega) \) for three different values of the temperature: \(T = 1 \) (continuous line), \(T = 1.1 \) (dashed line), and \(T = 1.2 \) (dotted line). In all three cases we fix the deformation parameter at \(\theta = 1 \) and the parameter \(m = 1 \).

FIG. 3: The values of the total radiation energy \(u_\theta \) as a function of the deformation parameter \(\theta = 0, 1, 2, \ldots, 21 \) for fixed temperature \(T = 1 \).

V. FINAL REMARKS

In this article we formally investigate the impact of twisted space-time on black-body radiation phenomena. Precisely we derive the \(\theta \)-deformed Planck distribution function (see formula (43)) as well as we perform its numerical integration to the \(\theta \)-deformed total radi-
FIG. 4: The values of the total radiation energy u_θ as a function of the deformation parameter $\theta = 0, 1, 2, \ldots, 21$ for fixed temperature $T = 2$.

...ation energy. In such a way we indicate that space-time noncommutativity very strongly damps the black-body radiation process. Besides we provide for small θ the twisted counterparts of the Rayleigh-Jeans and Wien distributions, respectively. Obviously for the deformation parameter θ approaching zero all obtained results become classical.

Acknowledgments

The author would like to thank J. Lukierski, W. Sobkow, and J. Miskiewicz for valuable discussions. This paper has been financially supported by the Polish NCN grant No. 2014/13/B/ST2/04043.

References

doi: 10.1016/j.physletb.2006.08.081
doi: 10.1209/epl/i2006-10149-x
[44] $x_0 = ct$.
[45] The discussed space-times have been defined as quantum representation spaces, the so-called Hopf modules (see e.g. [18, 19]), for the quantum N-enlarged Newton-Hooke Hopf algebras.
[46] Such a result indicates that the twisted N-enlarged Newton-Hooke Hopf algebra plays a role of the most general type of quantum group deformation at the nonrelativistic level.
[47] $\Delta_0(a) = a \otimes 1 + 1 \otimes a$, $S_0(a) = -a$.
[48] $\kappa_0 = \alpha$ ($\alpha = 1, \ldots, 36$) denote the deformation parameters.
[49] Due to the isotropy of the spectrum (38) we consider excitations only in one direction. Besides as a single (emitted) quanta we take $E = E_{n+1} - E_n = \hbar \Omega_\theta(\omega)$.
[50] The distribution function $f_\theta(\omega)$ has been plotted for different values of the parameters θ and T in Figures 1 and 2, respectively.
[51] We use the formula (43) with $m = k = c = h = 1$ and without the factor 8π.