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A new method of solving the dual integral equations is proposed. Uses
are made of Erdelyi and Sneddonís Fredholm equations. The method is more
satisfactory of extending the range of values of the parementers. Probably the
most interesting and central parts are change of the representations and an
attemption to solve the Fredholm equation with infinite degenerate kernel.

1. INTRODUCTION

DU A L integral equations of the form

j

m

a
u-~-~(U2-a2)~Y(u)JII(xu)du=F(x) O<x<L (1)

J-0 m ~(u)~(xu)du=G(x) x>l, (2)

where F(x) and G(x) are given functions, Y(x) is unknown, a20, P, Y and r are
real constants have applications to diffraction theory and also to potential problems
and dynamic problems in elasticity.

Many special cases have been considered by several authors(ë).(2).(3)ë(4)ë(5).
The case in which D>Y>T>-1  has been considered by Burlack@).  Now we
present here a method which reduces the dual integrations to a single Fredholm
integral equationî), introduced by Erdelyi and Sneddon, from the solution of which
?P is explicitly obtainable for no restriction upon paremeter T.

2. LEMMAS

Lemma I (ref. 8, p. 411)

s

m

0
t~ì-ì-~Jv(bu)  Ja (cu)du=O if O<c<b.

provided P>Y> - 1.

( 1) N. I. Ahierzer, Dokl. Akad. Nauk SSSR, 98, 333 (1954).
( 2 ) E. T. Copscn, Proc. Glasgow Math. Assoc. 5, 21 (1961).
( 3 ) M. Lower-grub,  I. N, Sneddon, Proc. Glasgow Math. Assoc. 6, 14 (1963).
( 4 ) J. Burlack, Proc. Glasgow Math. Assoc. 6, 39 (1963) ; ibid  6, 117 (1963).
( 5 ) S. Y. Lee, Chinese J. Phys. 2, 23 (1964).
( 6 ) J. Burlack, Proc. Edinburgh Math. Sot. 13, 179 (1962).
( 7) A. Erdelyi, I. N.. Sneddon, Canada J. Math. 14, 683 (1962).
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Lemma 2 (ref. 8, p. 415)

J J (c,/U2)Om Jv (bu)~Fxu"+'d~=O if O<c<b

provided Gv> - 1.

Lemma 3

J0)
0

u2T+1J0(x:1/u2+a2)  JO(yf??%?)du=2Ta7+1D(x,  y, a,-v-l),

where D(x, y,a,-r--l)=D(y,x,a,-r-l)= nfo (-1)” r(n+r+l)  x-(ì+T+ë)

32~

Proof. Using (ref. 8, P. 177(S)  )

J0
m tzí+1JO(x~~)/o(y,/u2+a2)du

1 c+mi= - -
4x2 JC-d

t-’ exp

Jco uzT+’ exp
0

=_ T(r+1)4T J c+wi
27t2X2y+2  c - m i

t-’ exp {t- -yzt}dt

l:xi ~~(l+-$ff~ë~+~’  exp {r-$}dr,

expanded (l+$$-)-ër+l’ in power series and using (ref. 8, p. 177 (8) ) again, then

the integration is

Zrar+fnc  (-1)” r(nLi+l) x-(n+r+l)J_(,+T+l)(xa)  y*/,(ya).

3. ERDGLYI AND SNEDDONíS EQUATIONS

Erdelyi  and Sneddonís have reduced the dual integral equations (ref. 7, (1.4))

Jm u-~~{I  +K(u)}V(u)  Jfi (xu)du=F(x) O<x<l, ( 3 )
0

Jm _u-~~?P  (u) /; (xu)du=  G(x) x>l, (4)
0

into J%(u) +11  &(u,~MlWdu=~ob4 O<u<L (5)

where hl is the unknown function, Ko and & are known functions given by (ref.
7, (4.3)) and (ref. 7, (4.2)) respectively as follows:
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and

where according to (ref. 7, (1.6) ) and (ref. 7, (1.2) )

{

k(u) =K(2/3 f(u) =22WîF(  J/ u)
g(u)=0 if u<l g(U)=22~ti-~G(-/~)  i f  z&l, ( 8 )

and & K and S are integral operators, discussed in (ref. 7, (2.2)) to (ref. 7, ’

(2.10) ), defined as follows

&f(x) =cJx (x-y) a-ëyîf(y)dyr(a) 0
(9)

Kvaf(x) = & zwJ (Y-X) a-lY-q-af  (Y)dY (10)

S,,,f (2) =x-(ì2)a $Om y -(1í2Vz,+a  (2d XY)f(Y)dY. (11)

Recently, Love(ë)  has discussed the case with K(u) =ekap occurring for Nichol-
sonís problem and hydrodynamics.

4. CHANGE OF THE REPRESENTATIONS

Since the dual intregral equations (1) and (2) are linear in K we may write

T(u)= Il'l(U) +Tyz(u) (12)

as follows

Jm

M-y-’  ($42~a2)  T?F,  (u)Js (xu)du=F(x) O<x<l (13)(I

$m ~y,(U)~(xu)dU=o x>l (14)
0

and sm

iVy-” (282~a2) TP2 (U)Jfi  (xu)du=O O<x<l (15)0

Jm
0

K~(u)JY  (xu)du= G(x) x>l. (16)

On comparing (14) with Lemma 1, we see that a particular solution of (14)
is the function uî-~+~J~  (yu), with y_(l,  ,u>~>-1, and so, by superposition, we

are led to the expression

Yí,(u)  =zr-p+l _I-o1 Yull(Y)J,(UYMY, (17)

( 8 ) G. N. Watson, Theory of Bessel Junctions, 2nd ed. 1958.
( 9 > E. R. Love, Canada J. Math. 15, 631 (1963).
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substituting (17) into (14)) inverting the order of
1, we verify that (17) satisfy (14).

Now by the Hankel inversion theorem applied

_I”
m

0
u-(~-píY,(uj~~(yu)du=~ Y>l

provided P>Y>-1. Then (14) is equivalent to

s
m

U-ì-PíYí1(U)J~(x:U)~~EO x>l.
0

Introduce a step function

intergration and using Lemma

to (17) shows that

(13)

then (13) and (14) become

s03

*-(y+fi)S(u-a)  (~z-a2)rYl(~)J,(XU)du=F(X) O<x<l (19)0

J
P

0
u-('-"'Y,(u)J,(xu)du=O x>l. (20)

By the same arguments, using Lemma 2 and define

Yv2=~Y+ë(~2_a2)  (1/2)1--T JIm YPZ(Y)~(Y~  x2--azMy,

we reduce (15) and (16) equivalently into

$m
0

u(3J2)ìS(u-a)  (u2-a2) ëY2(u)J,(xu)du=0 O < x < l (21)

J0
o, Y~(u)J,(xu)du=G(x) x>l. (22)

Since the subscripts for Bessel function in the pair of (19)) (20) and (21))
(22) are same, then Erdelyi  and Senddonís Fredholm equation (5) may be used.

5. THE SOLUTION

In the present paper we shall consider the equations with

G(x) =o x>l,
i.e. in eqs. (19) and (20) for Y=Yl.

On comparing (19) and (20) with (3)

1 +K(u) =S(u-a) (u2-a2) 7,

and (4 for G(X) =0 we see that

(23)

lir- ’
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And we now simplify (6), first making the substitutions

x=&C& y=dT,  t=z-r/z

&(x2, yî)  =+p)ì~”  JJxt)JJyt){ -1+S(t-a)  (P-aZ)' jtdt
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1 y’=-_- -
( )J”

IJ)
2x 0 tjo (xt)Jo ( yt) dt

-1 Y
+&)ë4m  t

ìë+ëJ,,(x~/)J,(~,/  t2+a2)dt,

using Lemma 3, we get

&(x2,  3î)  =2~-1aí+1(9îD(x,  y, &---r-l).

Instead of hl, we take 4 as unknown function

4 (x) =xî+lhl  (x2).

Now (5) becomes

$ (2) + l1 K(x, y) ti (y)Q/=R(x) O<x<l,

(24)

(25)

(26)

where K(x, y) =2y-ìxî+1Ko(x2,  yî)

=Zrar+ëxD(x,  y, a,--r+l), (27)

R(x) =x,+1Ro(x2). (23)

Next we simplify (7) under the condition G(X) =O. Let n denote zero or a

positive integer such that

n-/PO. (29)

Omitting for the moment the case of equality and using (ref. 7, (2.4)) and (ref.
7. (2.2) ), we obtain

x-(1!2)~ dn

Ro(x) = ~(~_~u)  dx”
x (,_,)n-,-l,,+(l,2"f(y)dy

=x
-(1!2)v d”

dx”
g(x;n-fll,

R(/-z) = x1.+$  g(x;n--1,

(30)

(31)

(32)

where g(z; n-b) is the Riemann-Liouville fractional integral of order n-flu.
The original unknown function Y in (1) and (2) is expressible in terms of 4,

the unknown function in (26) as follows by (ref. 7, (3.3))

Y(x) =+x+ (+x2) and +==S~1.2)V,-~~i2)V  hl. (33)
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Then by (ref. 7, (2.5))
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so

V(x) =2-v2~+1 1o1 Jo(XY)d(YldY,

a Hankel transform.

6. THE KERNEL

The kernel of (26)

K(x, y) =xJm t ë/  ’
--

2r+1Jo(xl,  t +aí)Jo(yJ/  t2+a2)dt

=2Taí+ëD(x,  y, &--r-l).

Using Lemma 3 or

J- O3
- -.

0
t2T+1Jo(ql  t2+a2)dt=  2r:ktl’ aT+lJ_cT+ll  (ua)

(ref. 8, p. 417(5)).
This indicates the desired continuity on the function if we define

NO,  Y)=O, Y>O,

K(x,  0) = 2rr(y+1)  ar+lJ_(r+l)(xa)xv , x>o.

If Y is an integer

K(O, Y) =o, Y20,

K(x, O)+~)T+ë~~ë;~+~) a7+%+1(xa), x20,

(34)

(35)

(36)

(37)

then O<x<l  in (1) may be extended into 0,(x51.
Burlakí6)  has considered the case 0,(x51 in (l), however, above results show

that it will be valid under certain particular values of a and r.


